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A flow circulation in a closed circular-cylindrical container is produced by a rotating 
lid. After a transient phase from an initial state a t  rest a steady-flow situation is 
reached for a certain parameter range. In  a subspace of this parameter range an 
undulating meridional flow occurs that may exhibit at  the axis of rotation one or 
several separation bubbles which are interpreted as vortex breakdown. Numerical 
calculations on the basis of the Navier-Stokes equations for incompressible homo- 
geneous and Boussinesq fluids enable the study of the influence of various flow 
parameters on the properties of these separation bubbles. The parameters varied are 
the Reynolds, Prandtl, Rayleigh, and Eckert numbers together with the ratio of 
height to radius of the container. The numerical results are in good agreement with 
experiments performed by Vogel, Ronnenberg, and Escudier. The stability of the 
fluid motions in these experiments with respect to non-axisymmetric disturbances 
strongly suggests that the corresponding axisymmetric solutions of the Navier- 
Stokes equations are stable configurations. 

1. Background 
A closed circular-cylindrical container with a lid is completely filled with a 

Newtonian fluid. Flow circulation is produced by the suddenly started constant 
rotation of the lid. After a transient period a steady-state fluid motion may be 
reached. Depending on the geometric and physical parameters involved, monotonic 
(that is, convex only, as seen from the boundaries) or undulating meridional 
streamline patterns develop. In the undulating fluid-flow mode axial stagnation 
points with a closed stream surface can occur (figure 1). This ‘separation bubble’ is 
interpreted as axisymmetric vortex breakdown in distinction to non-axisymmetric 
spiral vortex breakdown. Both types of vortex breakdown have been observed in 
pipes and chambers with swirling flows, in vortex filaments behind wing tips, and 
in atmospheric columnar vortices. Practical applications range from vortex control 
on modern aircraft to mixing in combustion chambers and to chemical reactions in 
swirling flows. The separation bubble, in particular, may serve as a liquid container 
which restricts or delays the mixing of the bubble fluid with its environment. 

t Now at the Institut A fur Mechanik, Universitiit Stuttgart, Pfaffenwaldring 9, 7000 Stuttgart 
80, West Germany. 
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FIQURE 1.  Container with a rotating lid. The meridional circulation with separation bubble is 
indicated by the shaded half-plane. 

The literature on vortex breakdown is extensive. Some recent reviews are by 
Leibovich (1978), Escudier & Zehnder (1982), Wedemeyer (1982)’ and hibovich 
(1984). The following discussion of previous work is therefore confined to vortex 
breakdown in a container, the specific subject of this paper. 

The earliest reference to a phenomenon in a container that looks like axisymmetric 
vortex breakdown in the form of an open bubble (as interpreted by Maxworthy 1972) 
goes back to Wilcke in 1780. A bubble-like phenomenon was observed by Vettin 
(1857) in a rotating container. By local heating he created columnar vortices in 
which he observed the periodic appearance of a vortex ring. Vettin explained this 
phenomenon as being generated by the sucking of air into the low-pressure axis region 
at the top of the vortex. It is interesting that Wegener (1917, of continental-drift 
fame) related Vettin’s separation bubble to a closed bubble of ‘onion’ shape which 
was clearly observed by Michaud in 1780 in waterspouts. More recently Maxworthy 
(see Bretherton, Carrier & Longuet-Higgins 1966) produced such a phenomenon, 
closely related to the container flow, between a stationary horizontal plate and a 
parallel plate above rotating in its own plane. Systematic experiments with container 
flow proper started with Vogel (1968) who was inspired a t  that time by the current 
lively debate on vortex breakdown (private communication). Vogel’s motivation is 
particularly noteworthy since interpretation of the separation bubble in the container 
flow as a vortex-breakdown phenomenon was later questioned. (In some recent 
studies as, for instance, in those by Wedemeyer 1982 and Leibovich 1984, doubts 
expressed earlier were weakened somewhat by statements such as ‘ . . .reversed flow 
regimes that resemble vortex breakdown ’). Vogel’s experiments were continued by 
Ronnenberg (1977) and Escudier (1984). They established the occurrence of steady 
separation bubbles in the parameter space (Reynolds number, ratio of height to 
radius of the container) as displayed in figure 2. Numerical calculations by Lugt & 
Haussling (1971,1973) revealed the existence of transient separation bubbles outside 
the parameter range for which steady separation bubbles could exist. Later calcu- 
lations within the parameter range (Lugt 6 Haussling 1982) confirmed the experi- 
mental results for steady-state bubbles by Vogel (1968), Ronnenberg (1977), and 
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FIGURE 2. Boundaries for single, double, and triple separation bubbles and the boundary between 
oscillating and steady flows. The arrows designate the range of Vogel’s experiments (after Escudier 
1984). 

Escudier (1984). Numerical calculations for the same flow problem at Reynolds 
numbers below the minimum values required for separation bubbles were performed 
by Dorfman & Romanenko (1966), Pa0 (1970, 1972), and BertelB & Gori (1982). In  
all these papers the full Navier-Stokes equations were used but with the restriction 
of axisymmetry. This assumption precludes non-axisymmetric instability. Numerical 
results with temperature effects in a Boussinesq fluid outside the range where bubbles 
appear were published by Bertela (1979). Studies with truncated Navier-Stokes 
equations were summarized by Grohne (1956). 

The wavy nature of the meridional flow in figure 1 (and of the azimuthal velocity 
component) suggests that more than one bubble may occur. In  fact, Sarpkaya (1971) 
observed in experiments up to three bubbles occurring simultaneously in a swirling 
pipe flow, and Grabowski & Berger (1976) found two bubbles in numerical com- 
putations for the same problem. Escudier (1984) determined systematically the 
occurrence of one, two, and three bubbles in the container flow and devised a diagram 
for the various modes (figure 2). 

The purpose of this paper is to study numerically the development and occurrence 
of more than one bubble in detail, to confirm the close agreement between numerical 
computations and experiments especially with regard to stability arguments, and to 
inquire about the influence of temperature fields on the properties of those bubbles. 
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t’ 2 0:  
z’ = 0, 0 < r’ < R:  u‘ = 0, v’ = 0, w’ = 0, T = Ti; 

2’ = H ,  0 < r‘ < R:  u’ = 0, v‘ = -Or‘, w’ = 0, T = Ti; 
r’ = R, 0 < z’ < H :  u’ = 0, v‘ = 0, W‘ = 0, aT/c?r’ = 0;  

2. Statement of the problem 
The circular-cylindrical container with radius R and height H is filled with either 

an incompressible homogeneous Newtonian fluid or a fluid under the restriction of 
the Boussinesq approximation. Both fluids have a constant dynamic viscosity p, 
specific heat cp,  and thermal conductivity A. The density of the incompressible 
homogeneous fluid has the same constant value everywhere, whereas the Boussinesq 
fluid has the density p = po(l +a@’), where 8‘ = Ti- T, T’ is the temperature, and 
a is the thermal expansion coefficient. The subscript 0 denotes the state at the bottom 
of the container. The lid rotates with constant angular velocity Q, and there is no 
gap between the container wall and the edge of the lid (figure 1). 

Prior to time t’ = 0 the fluid is at rest with the temperature Ti. At t’ = 0 the lid 
starts abruptly to rotate with Q = const. and the bottom temperature changes to 
Ti. As a result, meridional and azimuthal circulations develop that are considered 
laminar and axisymmetric, assumptions that are regarded as valid in this study. A 
gravitational force with constant g acts parallel to the axis of rotation. A heat flux 
takes place between the bottom and the lid. The sidewall is insulated. 

For this problem the NavierStokes equations, the equation of continuity, and the 
energy equation for axisymmetric motion assume, in cylindrical polar coordinates 
r’, cp, z‘ with corresponding velocity components u‘, v’, w‘, the form 

> (7 1 

I u’ I 

u r , + y + W z ’  r = 0, 

with the dissipation function 

(4) 

where p‘ is the pressure and v the constant kinematic viscosity PIPo. The set of 
equations (1)-(6) is valid for both incompressible homogeneous fluids when a = 0 
and Boussinesq fluids when a > 0. The inclusion of dissipation is understood within the 
framework of the ‘extended ’ Boussinesq approximation (Gray & Giorgini 1976). The 
adiabatic lapse rate is neglected in this study. 

The initial and boundary conditions are 
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It is convenient to introduce the following dimensionless variables : 

& = -  
R ’  

Reynolds number, 
QR2 

Re = - 

G2tcg(Ti - Ti) 
V 

S22H 

P C  v 
A 

Q2R2 

Pr = Prandtl number, 

Eckert number. EC = 

(9) 

The axisymmetry of the motion permits the stream function-vorticity formulation 
of the meridional flow. $ denotes the dimensionless stream function and c the 
azimuthal component of the dimensionless vorticity vector 

1 1 
r r $r 9 (10) u=-$z ,  w=-- 

g = uz-lPwr, 
Then, the initial-boundary-value problem to be solved is 

8t+u8r+w9., = - 
Re Pr 

with the boundary conditions for t 0: 

z = O ,  O < r < l :  $ = O ,  $ z = O ,  v = O ,  8 =  1, 

z = 1 ,  O < r < l :  $ = O ,  $ z = O ,  v = - r ,  8 = 0, 

r =  1, O < Z <  1: $ = O ,  $ - , = O ,  v = O ,  a8/ar=0,  

r = O ,  o < ~ < l :  $ = O ,  c = O ,  v = O ,  a8/ar=0. 

At z’ = H ,  r’ = R a singularity in the flow field occurs since there is no gap between 
container wall and edge of the lid. According to Lugt & Haussling (1971) this 



184 H .  J .  Lugt and M .  Abboud 

singularity has the form lim,.+l (aw/az) - ( 1  -r)-l and precludes the calculation of 
the torque coefficient of the lid. This situation was investigated by Schmieden (1928) 
for Re = 0, when no meridional circulation exists, with the width of the gap as a 
parameter, and on a ‘heuristic basis’ by Vogel (1968). Some researchers (Pao 1972; 
Bertela & Gori 1982), nevertheless, claim to be able to approximate the torque 
coefficient by excluding the area about the singularity. This approach is considered 
by the authors to be not correct in principle. 

For the calculation of the flow field, however, the singularity is of no consequence, 
since its influence is confined to its immediate neighbourhood. 

3. Numerical integration 
The initial-boundary-value problem defined by (12)-(16) is solved by using a 

straightforward finite-difference scheme. This scheme is essentially the same as that 
described by Lugt & Haussling (1973), except for the addition of the energy equation 
(15) and the accompanying initial boundary conditions. 

After a stretching procedure to include variable grid sizes in the domain of 
integration, the linear operators of (12), (13), and (15) are replaced by the Dufortr 
Frankel approximation. The nonlinear operators are expressed by central-difference 
schemes. The Poisson equation (14) is solved by the Thomas algorithm along lines 
of constant r ,  a modified Gauss elimination process. A one-sided, first-order 
approximation for the surface vorticity is used since it is stable compared to 
second-order schemes. The singular point ( r  = 1, z = 1) is locally limited and does not 
appear in the finite-difference algorithm (Lugt & Haussling 1973). The boundary 
condition for the temperature at the insulated sidewall is 19; = I9t m-l, where the 
subscripts i a n d j  denote the ith andjth points in the z- and r-directions respectively. 
j = m is the wall point with n the time step. 

The integration process is carried out in the following sequence. The new time level 
for the vorticity ct!jl, the velocity component wE$l ,  and the temperature 8:’;’ is 
computed at the inner points of the container. The stream function $?‘;l is subse- 
quently computed from (14). The last step of the cycle concludes with the calculation 
of the unknown values of the vorticity and the temperature at the corresponding 
boundaries of the domain. The computations are started from the state at rest and 
are performed until the steady state is reached, which is approximately attained when 

This ‘almost steady state’ is designated t,. 
The computer program was checked with various grid sizes. Most of the com- 

putations were performed with a network of 51 x 51, but a few cases required 81 x 81 
points because the bubble region needed higher accuracy. The program was further 
checked with results from Bertela’s (1979) computations, in particular for the 
temperature field. The verification with experiments is discussed in the next section. 

For the values of the lines of constant $, w, and 19 equal intervals were chosen. The 
set of streamlines was split into two parts: 

A$ = c1 

A@ = c, 

for $min < $ < 0 

for 0 ,< 9 < $/,,, 
outside the bubbles, 

inside the bubbles, 

with the constants lcll % c,. In the figures plotted here, the 2’-component was made 
dimensionless by z’ = z*R so that the ( r ,  z*)-field was not distorted. 
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FIGURE 3. Lines of constant $ for Re = 2000,6 = 2 at four different times after the abrupt start 
of rotation of the lid. (a) t = 51; (a) 122; (c) 190; (d) 332. 

4. Results 
The examples selected are divided into two sets. In  the first set is is assumed that 

Ra = 0. This means that the fluid is incompressible and homogeneous and that 
(12)-( 14) for the flow field are decoupled from the energy equation (15) in such a way 
that the flow field is independent of the heat exchange but not vice versa. Thus, for 
Ra = 0 only the parameters Re and 8 need be considered for studying the flow field 
whereas all parameters are involved for the computation of the temperature field. 
The seemingly odd values of the Reynolds numbers were chosen to compare the 
numerical results with experimental data in the literature. The values of Pr = 0.7 and 
7.1 are those for air and water. 

The second set of examples consists of cases with Ra > 0. This means that the 
bottom temperature Ti was selected to be higher than the temperature Ti of the lid 
and of the fluid a t  t = 0. This situation represents an unstable fluid stratification since 
p = po(l +a$’). The Eckert number is then positive too. The parameters Pr, Ra, and 
Ec were varied for two cases of Re and 8. 

4.1. Flow jelds for Ra = 0 

Since the development of the flow field with one separation bubble from the state 
at rest has been described by Lugt & Haussling (1982), it  suffices here to discuss briefly 
the process for the flow field with two bubbles, including some general comments 
made necessary by recent statements in the literature on stability (Escudier 1984; 
Leibovich 1984). The case Re = 2000, 8 = 2 has been selected (figure 3). 

When the motion abruptly starts at  t = 0, the flow develops from the corner region 
r = 1,  z = 1 where the flow singularity occurs. With time, mass and momentum are 
carried through the evolving Ekman layer along the lid’s surface and the Stewartson 
layer along the sidewall. During this period the streamlines and lines of constant 
azimuthal velocity are first monotonic (figure 3a)  and change then to undulating 
shapes. They may be labelled inertial waves (sometimes also called centrifugal 
waves). It is surprising that the simple geometry of the container permits such a 
complex flow as that indicated in figure 1 .  The reason for this complexity is that the 
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NavierStokes equations for an incompressible, rotating fluid can have hyperbolic 
behaviour; that is, the flow can sustain waves. The wavy motion may cause 
stagnation points on the axis of rotation associated with a closed stream surface, the 
‘bubble ’ (figure 3 b ) .  This phenomenon is called ‘vortex breakdown’ because it fulfills 
all the criteria of vortex breakdown, for instance those given by Faler & Leibovich 
(1977) : ‘ . . .the development of a stagnation point on the axis, followed by a region 
of reversed axial flow encapsulated by a greatly swollen stream surface’. The 
appearance of a stagnation point at  the axis can easily be explained by the pressure 
increase caused by the diverging helical streamlines (see Batchelor’s 1967, p. 546 
inviscid flow solution) and has nothing to do with instability, a statement which was 
made recently also by Wedemeyer (1982). Escudier’s limiting curves (which Escudier 
called ‘ stability boundaries ’) in figure 2 are thus transition curves in the sense of the 
appearance of stagnation points. 

A second bubble is barely visible a t  z* = 0.52 below the large one in figure 3 b.  The 
pulsating motion then shifts the large bubble down, decreasing its size, while the 
second bubble grows. The two bubbles coalesce to an oddly shaped single bubble of 
‘cucumber’ shape (figure 3c). At this point i t  may be recalled that, in the transient 
phase of an abruptly started container flow, very large and oddly shaped separation 
bubbles can occur which at times occupy a great portion of the container and then 
vanish when t+oo (Lugt & Haussling 1973). In the final, almost steady state a t  
t, = 331 two bubbles occur (figure 3d). Both clearly consist of one vortex ring or cell 
each, in contrast to the ‘egg-shaped’ bubble in swirling pipe flow which, according 
to Leibovich (1978), can have two cells. The bubbles in figure 3 can be of ‘egg’, 
‘onion’, and ‘cucumber’ shapes. The ‘onion’ shape can even develop to a form with 
a concave top. The v-component never changes sign in the bubble in any of the cases 
studied (not shown in figure 3), in contrast to the results by Bossel (1973) and Randall 
6 Leibovich (1973). 

A comparison with swirling flows in pipes of straight or slightly increasing or 
abruptly enlarging walls (Narain 1977) suggests that the shape and occurrence of 
bubbles not only depend on the entrance and exit conditions of the streamtube under 
consideration (in addition to the flow parameters) but also on the geometry of the 
streamtube. When container flow is compared with swirling pipe flow, however, the 
following distinction must be made. 

In experiments, axisymmetry is enforced in the container flow to a large degree 
in a natural way by the rotating lid and by recirculation. In  contradistinction, the 
entrance and exit velocity profiles in the pipe flow might deviate from axisymmetry 
and the swirling flow in the pipe might be more prone to non-axisymmetric 
instabilities than the container flow (Escudier 1984; Leibovich 1984). In  numerical 
calculations, on the other hand (for instance, by Grabowski & Berger 1976 for pipe 
flows) axisymmetry is enforced in both container and pipe flows throughout the whole 
flow domain. Thus, in these calculations there is no difference between the bubbles 
in a streamtube cut out of the container flow and those in a pipe except for the 
influence of the shape and the boundary conditions of the streamtube. 

Steady-state solutions for various pairs of parameters Re and 8 are shown in figures 
4-11. In figure 4, 6 is kept constant at 6 = 2 and Re is varied. This situation 
corresponds to following a vertical line in the diagram of figure 2. The case Re = 1002 
lies outside the region in which vortex breakdown occurs (figure 4a). The streamlines 
in the lower part are monotonic, and no bubble exists. For Re = 1492 one bubble is 
visible, and for Re = 1854 two bubbles appear (figures 4b,c). The latter case may be 
compared with figure 3 (d) for Re = 2000 where the two bubbles are shifted downward, 
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and a slight concavity of the top of the larger bubble is noticeable. For still larger 
Re the bubble vanishes. 

A comparison of the streamlines in figure 4 reveals that the Stewartson layer at 
the sidewall barely changes from one case to another; no undulations are visible. The 
lower corner ( r  = 1,  z = 0), however, initiates the wavy motion when the flow 
negotiates this corner and then is forced upward near the axis. The development of 
these waves depends on the Reynolds number. For low Reynolds numbers, of the 
order of 100, no waves occur because of the dominance of viscosity. When waves 
develop, their amplitudes increase with the Reynolds number and cause diverging 
streamlines around the axis from z* x 0.3 and beyond. The meridional flow weakens 
near the axis whereas, simultaneously, the u-component close to the bottom and the 
axis strengthens (not shown in figure 4). It is this combination of weaker meridional 
flow and stronger rotation near the axis that increases the local swirl angle 
$ = tan-’d/w’, or to be more precise, steepens the inclination d$/dr. This is clearly 
displayed in figure 5 which also reveals the shift of the centre of the main circulation 
toward the sidewall with increasing Re. As a consequence of the diverging streamlines 
in the lower part of the container axis, the pressure rises along the axis much sooner 
(about z* = 0.3) and steeper for Re = 1492 and 1854 than for Re = 1002 as can be 
seen in figure 6 in which Ap is computed from 

The axial component w rises and then decreases along the axis. For Re = 1492 and 
1854 w becomes zero and negative in a certain interval, signalling a stagnation point 

1-2 
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and the existence of a separation bubble. At Re = 1854 the wavyness is so strong that 
two bubbles appear. With further increase of Re the bubbles move upstream, a 
behaviour well-known from other studies of vortex breakdown (figure 3 4 .  At still 
larger Re, as shown by an analysis not presented here, the w-component of the 
velocity strengthens slightly relative to the v-component in such a way that no bubble 
develops. This extremely subtle interplay is graphically demonstrated in the next 
paragraph for other cases. 

I n  figure 7 ,  Re is kept constant a t  approximately 2000, and 6 is varied. This 
situation corresponds to following a horizontal line in figure 2 ,  starting from 6 = 2 
(figure 3 4  over 6 = 2.25 and 2.5 to  6 = 2.75 (figures 7 a ,  b, c ) .  I n  the two extremes 
6 < 1 and 6 % 1 no undulations occur. I n  the first case they have no chance to 
develop, since the corners are far away from the axis, and in the second case the 
undulations become longer and their amplitudes smaller because of the effects of the 
sidewalls in suppressing waves and increasing the influence of viscosity. In fact, 
increasing 6 has an effect similar to decreasing Re. The two bubbles in figure 7 ( a )  move 
away from the bottom with increasing 6 (figure 7 b ) ,  the lower bubble becomes smaller, 

FIQURE 8. Ap and w along the axis r = 0 for (a) Re = 1994, 6 = 2.5; ( b )  Re = 2006, 6 = 2.15. 
See the corresponding figures 7 (b ,  c) .  
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and then, in figure 7 (c), the bubbles have vanished for 6 = 2.75. Figure 8 gives 
information on the pressure and w-component along the axis. It is remarkable how 
similar these cases are and that small changes of the main circulation determines the 
appearance of the bubbles. As can be seen immediately, the flow field around the axis 
is very weak, at least from z* = 0.5 on. 

For Re = 2752,6 = 3.25 (figure 9) an extremely long time is necessary to reach the 
almost steady state, and even then it is not certain whether changes might still occur 
in the axial region, which is very sensitive to small disturbances of the main 
circulation. A t  t x 3500 three bubbles appear, and at t = 6405 the upper two bubbles 
have coalesced to form a ‘ cucumber ’ with two cells, visible in the photograph of figure 
9 (b) but not in figure 9(a). The w-component is almost nil inside the ‘cucumber ’. The 
extreme time spans needed to reach a steady state are an indication that the border 
of unsteadiness is being approached and this is verified a posteriori by experiments 
(figure 2). 

One attempt was made to compute the flow field in the turbulent range: 
Re = 5450, 6 = 1.75. The time history of $ at an inner point shows chaotic behaviour 
(figure 10). It may be recalled, however, that the computed flow is forced to be 
axisymmetric and may not be realistic. Still, Escudier (1984) observed that ‘Until 
well into the unsteady-flow domain, the flow shows negligible departure from 
axisymmetry ’ . 

The numerical computations are compared with photographs and measurements 
published by Vogel (1968), Ronnenberg (1977), and Escudier (1984). The position h 
of the lower stagnation point of the bubbles measured in fractions of H, and the 
vertical size s of the bubbles are used for comparison (table 1). 

The data of the numerical computations for h / H  are smaller than those from 
Escudier’s photographs, and the numerical data for s / H  are in general larger. It may 
be mentioned that i t  is often difficult to determine h / H  and s / H  from the photographs 
and that the streaklines in the photographs do not always reflect the exact boundary 
of the bubble. Also photographs intentionally over-emphasize the bubble region 
although the fluid motion there is very weak in reality. Figure 11 shows good 
agreement between the photograph and numerical computations for Re = 1854 
but less agreement for Re = 2752 in figure 9. In  the latter case, which is located in 
figure 2 at the lower tip of the limiting curve for three bubbles and which borders 
on unsteadiness, tiny changes of the flow field after the long transient phase may 
still have a large effect on the location of those weak bubbles. Other than these 
discrepancies, the overall agreement is good, and the experiments confirm the 
assumption that axisymmetric solutions of the NavierStokes equations are stable. 

4.2. TemperatureJields for Ra = 0 
For the particular case Re = 1350, 6 = 1.58 the Prandtl number was varied. Very 
small values of Pr mean dominance of heat diffusion over heat convection. Figure 
12 (a) with Pr = 0.01 reveals almost horizontal strata of isotherms, slightly bent down 
near the sidewall where the flow is strongest. The temperature at the axis drops 
almost linearly (figure 13). This situation changes drastically for Pr = 0.7 (figure 
14a) : convection turns the isotherms in the vertical direction, and the heat transfer 
near the bottom and the lid rises greatly. This effect is even more pronounced with 
increasing Pr (figures 146d). The corresponding Nusselt numbers, defined by 
Nu = -M/az ,  are plotted against r for the bottom and the lid in figure 15. For 
Pr = 0.01 (figure 15a) the heat transfer is quite evenly distributed over the bottom 
and the lid. With increasing Pr the bulk of the heat transfer concentrates at the centre 
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(b)  (4 -~ ~ 

FIQURE 9. Lines of constant II. in the total meridional plane for Re = 2752 and S = 3.25 at steady 
state. ( a )  Numerical computation and ( b )  photographs of the axis region by M. P. Escudier. 
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FIQURE 10. Time history of $ at a point near the centre of flow circulation for Re = 5450 
and S = 1.75. 
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Experiment Numerical computations 
Source of 

Re 8 experiment h l H  ~ I H  hlH 81h 
1130 1.58 Vogel 0.45 0.03 0.45 0.04 
1350 1.58 Ronnenberg 0.30 0.14 0.31 0.14 
1492 2 Escudier 0.34 0.06 0.31 0.09 

1854 2 Escudier 
1580 1.59 Ronnenberg 0.24 0.14 0.25 0.12 

Bubble 1 0.21 0.16 0.20 0.14 
Bubble 2 0.52 ? 0.44 

Bubble 1 0.24 0.06 0.20 0.08 
Bubble 2 0.54 0.08 0.43 0.17 

Bubble 1 0.18 - 0.04 0.15 0.07 
Bubble 2 0.43 - 0.25 0.32 0.30 

TABLE 1. Comparison of the numerical results with experiments including photographs of 
Vogel (1968), Ronnenberg (1977) and Escudier (1984) 

1994 2.5 Escudier 

2752 3.25 Escudier 

FIQURE 11. Lines of constant + in the total meridional plane for Re = 1854 and 8 = 2. (a) Numerical 
computation and (b) photograph by M. P. Escudier. 

(4 (b) * D * 
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z* 0.8 0.8 

0.4 0.4 

0 
0 0.4 0.8 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8 

r r r r 

FIQURE 12. (a)  Lines of constant +, v, and 9 for Re = 1350, 8 = 1.58, Ec = 0.01, Pr = 0.01, and 
Ra < 0.01 at steady state, and (b) lines of constant $ for the same parameters but with Ra = 0.2. 



194 

1.0- 

0.8 - 

0.6 - 
9 -  

0.4- 

0.2- 

0-  

H .  J .  Lugt and M .  Abboud 

0.80- 

0.64- 

0.48- 

0.32- 

0.16- 

0 -  
I 

w x lo-' 

Ap x 10-8 

-0.31 

-0.41 

FIGURE 13. Ap, w, and 8 along the axis r = 0 for the case of figure 12(a). 

of the lid and near the outer part of the bottom (figures 15b-d). This behaviour is 
because heat transfer is determined more and more by heat convection with 
increasing Pr. If this heat convection is directed away from the solid surface, and 
heat transfer becomes smaller than if it is directed toward the surface. Near the axis 
in figures 14 (b ,  c, d )  there is a warm, mushroom-like core close to Ti that narrows with 
increasing Pr. The top of the mushroom is caused by the bubble. However, according 
to the existence of a maximum principle that 6 cannot have a local extremum inside 
the fluid, a temperature bubble cannot occur as long as Ec = 0 (Lugt 1985). In figure 
14(d), with Ec = 0.01, a weak temperature bubble does exist. 

For Pr = 0.01, Ra = 0, a change in the Eckert number from 0 to 1.0 has no visible 
effect on the temperature field. 

4.3. Flowfields with temperature effects (Ra > 0) 
The term with Ra in (12) connects the Navier-Stokes equations with the energy 
equation. The first series of computations determined the Ra at which this connection 
becomes effective. For Re = 1350, S = 1.58, Pr = 0.01, Ec = 0.01 no influence was 
observed when Ra < 0.01. With increasing Ra the bubble becomes larger (figure 
12b). The heavier fluid at  the top rushes down along the sidewall and causes near 
the axis a wave larger than that of the fluid without the gravitational pull. No steady 
state was obtained for Ra = 0.3, rather a periodic oscillation of the flow field was 
observed (figure 16). The temperature field remained almost steady. 

The Rayleigh number Ra introduced in this paper in (9) is related to 
Ra* = upo c p  g(Ti - Ti) P I v A  used in the literature for purely natural convection by 

Ra* = Re2 Pr S2 Ra. (19) 
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FIQIJRE 14. Lines of constant 19 (isotherms) for Re = 1350,8 = 1.58, and for (a) Pr = 0.7, 
(b)  7.1, (c) 15, ( d )  30. 

For instance, Re = 1350, S = 1.58, Ra = 0.05, Pr = 0.01 and 10, corresponds to 
Ra* = 2275 and Ra* = 2.275 x lo8 respectively. 

In the second series of computations the Prandtl number was varied from 
Pr = 0.01-10 for Ra = 0.01, Re = 1854, 6 = 2 ,  Ec = 0.01. Again, for Pr = 0.01 no 
difference was noticed with the case Ra = 0 (figure 4c).  However, with increasing Pr 
the axis region including the bubbles becomes very sensitive to tiny changes in the 
main circulation. For Pr = 2 only one bubble is left from the original two (figure 17a), 
and for Pr = 10 no bubble occurs (figure 17b). 

In the last series of computations the Eckert number was varied from 0.1 to 4 
(figure 18). The constant parameters are Re = 1350, 6 = 1.58, Ra = 0.05, and 
Pr = 0.7. In these cases dissipation generates heat where large velocity gradients 
exist, and dissipation can influence both flow and temperature fields considerably. 
The temperature inside the fluid can exceed 9 = 1 and can exhibit a local maximum 
(Lugt 1985). The $-curves for Ec = 0.1 in figure 18(a) do not yet display such a 
maximum but reach values up to 1.01 at the axis of rotation close to the corner 
z* = 0, r = 0. For Ec = 4 (figure 18b) two maxima of 9 occur a t  the axis: in a 
small region below the bubble with a,,, = 1.026, and in the bubble itself with 
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FIQURE 15. Nusselt numbers of lid and bottom plotted against r for Re = 1350, 6 = 1.58, and for 
(a) Pr = 0.01, ( b  
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lj0.7, (c) 7T1, ( d )  30. 
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FIGURE 16. Lines of constant $ for Re = 1350, S = 1.58, Pr = 0.01, Ra = 0.3, and Ec = 0.01 at 
times of ( a )  minimum and ( 6 )  maximum of the amplitude. 
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FIGURE 17. (a) Lines of constant $, v, and 8 for Re = 1854,S = 2, Pr = 2, Ra = 0.01, and Ec = 0.01 
at steady state, and ( b )  lines of constant $ for the same parameters but with Pr = 10. 
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FIGURE 18. Lines of Constant $ and 8 for Re = 1350, S = 1.58, Pr = 0.7, Ra = 0.05, and for 
(a) Ec = 0.1, (b)  4 at steady state. 

a,,, = 1.015. These local maxima are also visible in figure 19(b) which may be 
compared with figure 19(a) for Ec = 0.1. .Figure 19, moreover, displays a large 
increase of the pressure along the axis. Finally, the local Nusselt numbers for the lid 
and the bottom in figure 20 indicate that for Ec > 0 the total heat flux on the lid is 
larger than on the bottom owing to the generation of heat inside the fluid. This 
is dramatically illustrated in figure 20(b) ,  which shows that the heat flux on the 
bottom is almost nil for Ec = 4. 

5. Conclusions 
The simple geometry of the container with a rotating lid can cause complex flow 

patterns since rotating incompressible homogeneous and Boussinesq fluids can 
sustain waves. The occurrence of separation bubbles in steady waves, visible as 
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FIGURE 19. Ap, w, and 4 and the axis r = 0 for the two cases of figure 18: (a) Ec = 0.1, (b )  4. 
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FIGURE 20. Nusselt numbers of the lid and the bottom plotted against r for the two cases of 
figure 18: (a )  EC = 0.1, (a) 4. 
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undulatory streamlines in the meridional plane, is due to the adverse pressure 
gradient in diverging helical flows causing the occurrence of stagnation points. 
Instability plays no part in this phenomenon, which can be interpreted as axisym- 
metric vortex breakdown according to the commonly accepted definition. 

The extremely weak flow in the axial region where bubbles occur is very sensitive 
to small changes in the main circulation. The bubbles have essentially three types 
of contours: ‘egg’, ‘onion’, and ‘cucumber’ shapes, and only in the latter type were 
two cells observed in photographs. 

For 6 << 1 and S % 1 no bubbles occur. In  between, depending on the parameters 
involved, one, two, and three bubbles can exist simultaneously, as depicted in figure 2 
for Ra = 0. 

The temperature field plays no part in the occurrence of bubbles for Ra = 0, since 
the energy equation is decoupled from the Naviel-Stokes equations. For Ra > 0 
(Ra c 0 is not considered in this paper) the occurrence and properties of the bubble 
depend on the interplay between the undulatory streamlines in the meridional plane 
and the azimuthal velocity component. This interplay, which determines the 
upstream swirl angle, is a function of Re, Ra, Pr, and Ec. 

The authors would like to thank Dr M. P. Escudier, Brown Boveri Research 
Center, for providing the photographs in figures 9 and 11. 
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